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Chapter 1

Getting Started

VisualAivika is a visual simulation software tool. It is focused on System
Dynamics and Discrete Event Simulation (DES). There is an easy-to-use
diagram editor that allows creating nice looking Stock and Flow Maps
(SFM) as shown in figure 1.1. These diagrams can be used for discrete
event simulation models too.

There is also a simulation component that supports its own high-level
modeling language. The model equations are displayed in a separate
tab panels as demonstrated in figure 1.2. The user can switch between
diagrams and equations.

There is the Equation Editor, where you can define integrals, arrays,
random functions — look at figure 1.3. The editor is opened right after one
of the entities is selected on the diagram.

Moreover, VisualAivika supports the Monte-Carlo simulation, which
allows providing Sensitivity Analysis. There are means for plotting charts
on the diagram to show the results of simulation in a form of Time Series,
XY Chart and Deviation Chart as shown in figure 1.4. The results can be
exported as CSV data files.

Futhermore, VisualAivika supports arrays and subscript. Figure 1.5
shows the chart that corresponds to some array.

Finally, before starting the simulation, the user can define the simulation
specs as illustrated in figure 1.6.
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6 CHAPTER 1. GETTING STARTED

Figure 1.1: Editing the SFM diagram.
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Figure 1.2: The Equations panel.
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Figure 1.3: The Equation Editor panel.
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Figure 1.4: The charts for Sensitivity Analysis.
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Figure 1.5: Plotting arrays on the chart.
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Figure 1.6: Defining the simulation specs.
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Chapter 2

How to Create Simple Model

For example, we can reproduce a model from the 5-Minute Tutorial of
Berkeley-Madonna[1] with the following equations.

ȧ = −ka × a, a(t0) = 100,
ḃ = ka × a − kb × b, b(t0) = 0,
ċ = kb × b, c(t0) = 0,

ka = 1,
kb = 1.

There are two ways how to define these equations. The first one is
based on direct using integrals.

Create a new empty model and then define the following SFM Auxil-
iaries connected with help of SFM Links as shown in figure 2.1. To add
new items, you can use the toolbar of the diagram panel.

Then click on the Equations tab. By clicking on the variable equations,
complete the definition of the corresponding equations in the Equation
Editor. For the first time, it is required to click on some equation to see the
editor. Then the editor remains active and it is enough to click on each
variable equation. In the end, you should define the following equations
as shown in figure 2.2.

Now it is time to add the chart. Return to the diagram panel by clicking
on the Diagram tab. Select the Result Chart element from the diagram
toolbar and create a chart item on the same diagram. Here you should
receive something similar to that one, which is displayed in figure 2.3. The
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14 CHAPTER 2. HOW TO CREATE SIMPLE MODEL

selected fragment on the displayed diagram is a part of the future chart
element we will define.

Then click on the chart element to open the Graph Editor. In the editor
you can add the following variables to the chart: A, B and C. It should look
like figure 2.4. These variables are integrals.

Now we are ready to launch the simulation. There is the Start Simulation
button on the main toolbar, which is displayed as arrow. It is shown in red
in figure 2.5. Push the button to start running the simulation!

You should see the results similar to figure 2.6.
Probably, your chart is not smooth enough as it was illustrated in the

figure. To fix this and improve the accuracy of plots, open the Simulation /
Simulation Specs menu item and decrease the dt parameter value. Repeat
the simulation run. Now you should see a more smooth and precise chart
as it was shown in the figure earlier.

There is also another method of defining the ordinary differential equa-
tions, which is based on using the SFM Stocks and Flows.
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Figure 2.1: The diagram consisting of future integrals.
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Figure 2.2: The equations consisting of integrals.



17

Figure 2.3: After the chart is added to the diagram.
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Figure 2.4: Add the variables of integrals to the chart for plotting.
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Figure 2.5: The Start Simulation button.
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Figure 2.6: How the diagram looks like after the simulation has been
finished.



Chapter 3

How to Create SFM Model

The SFM stock can be a reservoir. Then it becomes equivalent to the
integral, but SFM flows become equivalent to derivatives. The direction of
the SFM flow then shows the sign of the derivative, which can be positive
or negative. The combination of all SFM flows connected to the specified
SFM stock defines the corresponding sum of derivatives with possibly
different signs.

The unidirectional SFM flow is always non-negative per se, while the
bidirectional one may have any value. But the actual impact on the deriva-
tive for each connected integral depends on the combination of all factors:
whether the SFM flow is bidirectional or unidirectional, whether it is inflow
or outflow.

Fortunately, the Equations tab displays the corresponding equations in
a mathematically oriented way, where it is easy enough to see the sign of
each derivative and its actual impact.

To demonstrate the approach, we will use the simple model of expo-
nential growth.

Create a new model and add the following SFM elements to the diagram
by using the diagram component toolbar as shown in figure 3.1.

Click on the Cash stock to open the Equation Editor. Define the initial
value equal to 1000 as illustrated in figure 3.2. This value will be the initial
value of the integral that corresponds to the Cash stock.

Then select the Net Interest flow and change the Flow Direction property
in the equation editor so that the property value would be uniflow. You
should see something similar to figure 3.3.

It means that the corresponding SFM flow can have a non-negative
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22 CHAPTER 3. HOW TO CREATE SFM MODEL

Figure 3.1: The initial SFM diagram for the exponential growth model.

value only, although the actual impact on the SFM stock may differ by the
sign, which depends on the direction of the SFM flow too. Here the Net
Interest entity is an inflow for the Cash stock. Hence the corresponding
derivative has always a non-negative sign. The stock value must grow as
we will see later.

After we made the Net Interest flow unidirectional, our diagram must
slightly change. Please note to the fact that the corresponding flow element
has one arrow now, while it had two arrows before, in the start and in the
end. Now it has one arrow only in the end, where it connects to the Cash
stock.

Now define the rest of equations so that they would look the same as
shown in figure 3.4. Note that you should not enter the maximum function
call for the Net Interest entity. It will be added automatically, for the flow is
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defined as unidirectional. What you should enter for the flow is expression
Cash * Interest_Rate.

The same equations could be defined directly with help of integrals, but
here we use the SFM elements. The SFM Stock corresponds to the integral.
The SFM Flow is related to the derivative.

If we add the chart element for the Cash stock according to the approach
described in the previous chapter 2, then we will see the next chart as
demonstrated in figure 3.5. Here the stop time was increased up to 36 in
the Simulation Specs editor.

The point is that VisualAivika provides a comprehensive support of
equations, with help of which we can build and run complex enough
systems of ordinary differential equations. Moreover, VisualAivika has
means for providing the Sensitivity Analysis with help of such equations.
At the same time, VisualAivika allows you to create discrete event simu-
lation models too, which can be combined with the ordinary differential
equations.
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Figure 3.2: The SFM stock initial value.
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Figure 3.3: Making the SFM flow unidirectional.

Figure 3.4: The exponential growth model equations.
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Figure 3.5: The exponential growth chart.



Chapter 4

How to Create Queueing System
Model

To model the queueing systems, VisualAivika uses an approach similar to
the GPSS modeling language[2], but the implementation is quite different,
which has roots in functional programming. Like GPSS, VisualAivika
allows using blocks, but here blocks are already computations that can be
assigned to variables like integrals or numbers.

Actually at the time of writing this text, there was no yet special visual
support in VisualAivika for blocks, but we can use the same SFM Aux-
iliaries that we used earlier in the previous chapters. We just assign the
block computations to the SFM Auxiliary variables. As a consequence, the
diagram consists of items that are connected in the direction opposite to
the actual transact processing.

Figure 4.1 shows blocks, which are similar to the corresponding code
in the GPSS language.

Code in GPSS

GENERATE 18,6
QUEUE JOEQ
SEIZE JOE
DEPART JOEQ
ADVANCE 16,4
RELEASE JOE
TERMINATE

GENERATE 480
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28 CHAPTER 4. HOW TO CREATE QUEUEING SYSTEM MODEL

Figure 4.1: Block computations as SFM Auxiliaries.

TERMINATE 1

START 1

The corresponding equations in VisualAivika are provided in figure
4.2. Here we note that VisualAivika checks the diagrams and equations
for consistency. The warnings in orange colour can be ignored, for we do
not want to complicate the diagram.

The blocks are composable in VisualAivika. They can be connected to
each other with help of the >>> operator to create new blocks and block
chains. The block passes the transacts further, while the block chain either
terminates the processing, or creates an infinite loop.

The provided equations are not complete yet. Now we should create a
stream of random arrivals and then launch the entire simulation. For that,
we add the stream and a special runner element to the diagram as shown
in figure 4.3.

The complete equations are provided in figure 4.4. Here we note that
there is a special do! operator to launch the transact processing by the
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Figure 4.2: Equations for the block computations.

specified stream of random arrivals and block chain. The act of running is
always explicit in the model.

Now we can define the stop time as 480 and make the integration time
step small enough and equal to 2.5, for example.

Actually, the integration time step is not used in the queueing system
model, but it affects to that how the charts are plotted and how the CSV
tables are created. The chart plotting always happens in the integration
time points, regardless of that whether the integration method is used or
not. Therefore the dt parameter has to have some reasonable value.

Finally, it is time to add some output for the results of simulation. You
can use chapter 6 as a reference material that describes different methods
of displaying the results. However, there is one yet SFM element that can
be useful now and that can decrease the cluttering on the visual diagrams.

Add a new diagram to the model and then add a new SFM Reference
to that diagram as shown in figure 4.5. Let this reference be connected to
the Joe variable from the main equations of diagram Model. Also add new
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Figure 4.3: The complete model items.

items that are connected to the SFM Reference item. They will return the
facility properties we want to display on the charts.

The corresponding equations for the properties are provided in figure
4.6. The functions applied are described in section 5.16.

For example, if we plot the Deviation Chart for the queue length prop-
erty and its statistical sibling for 10000 simulation runs then we can get the
followings results as shown in figure 4.7.

Note that the both deviation charts converge, for the random process
becomes stationary fast enough1. Also we do not use the fact that the
property is non-negative, but it has a wide enough spread because of high
deviation.

In this model we did not use ordinary differential equations, but actu-

1The statistics reset can be added to one of the future versions of VisualAivika.
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Figure 4.4: The complete model equations.

ally we could. VisualAivika does allow us to use the ordinary differential
equations and discrete event simulation in one combined model.
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Figure 4.5: Use SFM Reference to decrease the cluttering on the diagrams.
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Figure 4.6: Extract the facility properties.
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Figure 4.7: The statistical results of simulation.



Chapter 5

Modeling Language

The VisualAivika modeling language allows you to specify dynamic sys-
tems. The model can consist of stocks and auxiliaries. The stock variable
can be an integral (reservoir). The auxiliary variable is a function of other
variables and computations.

Currently, discrete event simulation entities are supported through the
auxiliary variables only.

5.1 Simulation Specs

There are predefined variables that exist in each simulation:

• starttime defines the initial time;

• stoptime defines the final time;

• dt defines the integration time step;

• time returns the current integration time.

The first three constants like other simulation specs described in this
section can be defined in the dialog window, which is opened by menu
Simulation / Simulation Specs.

If your model contains only discrete event simulation entities, then the
dt parameter can be made arbitrary. Nevertheless, its value reflects on that
how charts are displayed, because values on the chart are sampled in the
dt increments.
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36 CHAPTER 5. MODELING LANGUAGE

VisualAivika supports the following integration methods:

• Euler’s method;

• 2nd order Runge-Kutta;

• 4th order Runge-Kutta.

Also it supports the following modes of generating random numbers:

• a simple mode turns on a standard .NET random number generator,
which is weak but fast;

• a strong mode uses a cryptographic random number generator, which
returns more random numbers but it is rather slow;

• a mode with the specified initial seed, which allows reproducing the
same pseudo-random numbers for each run.

In addition, you can specify the number of simulation runs for the
Monte-Carlo simulation, which is reflected by the following predefined
variables:

• runIndex returns the current run index starting from 0;

• runCount returns the total number of simulation runs within the
experiment.

These two built-in variables are useful for planning the simulation
experiment, when providing the Sensitivity Analysis as shown in section
5.9 below.

5.2 Variables

The following list describes the variable types in VisualAivika.

• Auxiliary. Any variable that is defined as a function of other variables,
or a constant.

• Stock. The dynamic variable in the model. At present, it can be a
reservoir (integral) only.
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• Flow. The variable that manages a stock. It can be either an inflow or
outflow, bidirectional or unidirectional.

• Table. A table function which parameters are the x- and y- coordinates.

• Range. An index range for arrays.

• Block. A block computation that processes transacts and then returns
transacts, either the same or modified ones.

• Block Chain. A block computation that processes transacts and then,
either finishes the processing or has an infinite loop.

• Generator Block. A generator block computation that can start pro-
cessing the transacts by the specified block chain.

• Stream. A stream of arrival events that come in the modeling system
outside.

• Action. Some action such as launching the processing of transacts by
the block chain.

• Queue. The queue entity.

• Facility. The facility is such a resource that may have only one owner.

• Storage. The storage is such a resource that can be borrowed by
multiple transacts.

• MatchChain. The match chain can delay the transacts from the same
assembly set.

• Array. An array of other variables.

The variable name in VisualAivika is case sensitive. The first symbol
must be a letter or underscore. The next symbols can contain letters, digits
and underscore in any sequence.

Example

Total_Resources, Scope, x, y
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5.3 Equations

The VisualAivika modeling language allows you to define the model by
writing a set of mathematical equations and expressions. The equations
can be written in any order. The order of computation is determined based
on dependencies between the variables.

VisualAivika uses standard algebraic expressions with the same rules
of precedence as those used by Java, C/C++ and other common languages.

Also VisualAivika supports standard mathematical functions and has
additional functions that make writing equations faster and simpler.

Example

y = integ (1 + 0.2 * y * sin (t) - 1.5 * t ^ 2, 0);
z = integ ((y - z)^2, 0);

Here the integ function returns an integral by the specified derivative
and initial value.

Example

Adequacy_of_Control_Resources = Control_Resources / Desired_Control_Resources;

The Equation Editor automatically ends each equation by the semicolon
symbol.

5.4 Operators

VisualAivika supports standard binary and unary operators that observe
conventional precedence. The operators are shown in the tables below.

Table 5.1: Unary Operators

not Logical inversion
+ - Plus and minus
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Table 5.2: Binary Operators

ˆ Arithmetic power
* / + - Arithmetic operators
< <= > >= Comparison
== != Equality and inequality
and or Conjunction and disjunction
>>> Block composition

The block composition operator requires some clarification.
Expression b1 >>> b2 returns a block composition that processes trans-

acts by the first block b1 and then by the second block or block chain b2. If
the latter argument b2 is block, then the result is a block as well. Otherwise,
if the latter argument b2 is block chain, then the result is a block chain too.

5.5 Constants

VisualAivika defines the following constants.

Table 5.3: Built-in Constants

true Logical true
false Logical false
pi The value of π
infinity Represents a positive infinity
nan Represents a value that is not a number

5.6 Functions

Here is a summary table of the basic predefined functions.

Table 5.4: Basic Functions

abs (x) Returns the absolute value of x
sqrt (x) Returns the square root of x
int (x) Returns the largest whole number less

than or equal to x



40 CHAPTER 5. MODELING LANGUAGE

round (x) Returns the number nearest to x
power (x, y) Returns the same as xy

mod (x, y) Returns the remainder of x/y
min (x1, x2, ...) Returns the minimum value of x1, x2,

. . .
max (x1, x2, ...) Returns the maximum value of x1, x2,

. . .
sum (x1, x2, ...) Returns the sum of x1, x2, . . .
prod (x1, x2, ...) Returns the product of x1, x2, . . .
mean (x1, x2, ...) Returns the average value of x1, x2,

. . .
sin (x) Returns the sine of x
cos (x) Returns the cosine of x
tan (x) Returns the tangent of x
arcsin (x) Returns the inverse sine of x
arccos (x) Returns the inverse cosine of x
arctan (x) Returns the inverse tangent of x
arctan (y, x) Returns the inverse tangent of (y/x)
sinh (x) Returns the hyperbolic sine of x
cosh (x) Returns the hyperbolic cosine of x
tanh (x) Returns the hyperbolic tangent of x
sinwave (a, t) Returns the sine wave of amplitude a

and period t
coswave (a, t) Returns the cosine wave of amplitude

a and period t
exp (x) Returns e raised to power x
log (x) Returns the natural (base e) logarithm

of x
log (x, y) Returns the logarithm of x in base y

The sinwave and coswave functions require some note. They are de-
fined as follows.

Definition

sinwave(a, t) = a * sin(2 * pi * time / t);
coswave(a, t) = a * cos(2 * pi * time / t);
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Table 5.5: Random Number Generators

random (a, b) Returns the uniform random number
between a and b

randomInt (a, b) Returns the integer uniform random
number between a and b

triangular (a, m,
b)

Returns the triangular random num-
ber between a and b with median m

normal (m, n) Returns the normal random number
with mean m and deviation n

exponential (m) Returns the exponential random num-
ber with mean m

erlang (b, m) Returns the Erlang random number
with scale b and integer shape m

poisson (m) Returns the Poisson random number
with mean m

binomial (p, n) Returns the binomial random number
on n trials of probability p

Table 5.6: Conditional Expression

if x then y else z Returns y if x is true, otherwise returns
z

Table 5.7: Miscellaneous Functions

step (h, t) Returns 0 until time t and then returns h
pulse (t, d) Returns the pulse of height 1 starting at time

t with duration d
pulse (t, d,
p)

Returns the pulse of height 1 starting at time
t with duration d and period p

ramp (s, t1,
t2)

Returns 0 until time t1 and then slopes until
time t2 and then holds s

These functions have the following definition. They use the discrete
operator described further. In short, the operator returns the value, which
doesn’t change except of the integration dt intervals regardless of the
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integration method used.

Definition

step(h, t) = discrete(if time + dt/2 > t then h else 0);

pulse(t, d) = discrete(if (time + dt/2 > t) and (time + dt/2 < t + d)
then 1 else 0);

pulse(t, d, p) = pulse(t + (if (p > 0) and (time > t)
then round((time - t) / p)*p else 0), d);

ramp(s, t1, t2) = discrete(if (time + dt/2 > t1)
then (if (time - dt/2 < t2)

then s*(time - t1)
else s*(t2 - t1))

else 0);

Table 5.8: Interpolation

table ((x1, y1), (x2,
y2), ...)

Creates a table consisting of
points (x1, y1), (x2, y2), . . . ,
where the table can be used as a
function later

table ((x1, y1), (x2,
y2), ...) (x)

Lookup x in the list of points
(x1, y1), (x2, y2), . . . using
linear interpolation

step (t) Creates a discrete step-wise in-
terpolation function based on
the specified table t

step (table ((x1, y1),
(x2, y2), ...)) (x)

Lookup x in the list of points
(x1, y1), (x2, y2), . . . using
the discrete step-wise interpola-
tion

The table function interpolates the argument according the specified
table.
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Example

Effect_of_Scope_Stability_of_Rules =
table ((0, 0.5), (0.2, 0.535), (0.4, 0.585), (0.6, 0.675),

(0.8, 0.82), (1, 1), (1.2, 1.21), (1.4, 1.35),
(1.6, 1.42), (1.8, 1.47), (2, 1.5))

(Scope);

Table 5.9: Integral Functions

integ (d, i) Returns the integral of rate d and ini-
tial value i

delay (x, t) Returns a first order exponential delay
of x for time t conserving x

delay (x, t, i) Returns a first order exponential delay
of x starting with i for time t conserv-
ing x

delay3 (x, t) Returns a third order exponential de-
lay of x for time t conserving x

delay3 (x, t, i) Returns a third order exponential de-
lay of x starting with i for time t con-
serving x

delayN (x, t, n) Returns an n’th order exponential de-
lay of x for time t conserving x

delayN (x, t, n,
i)

Returns an n’th order exponential de-
lay of x starting with i for time t con-
serving x

smooth (x, t) Returns a first order exponential
smooth of x over time t

smooth (x, t, i) Returns a first order exponential
smooth of x over time t starting at i

smooth3 (x, t, i) Returns a third order exponential
smooth of x over time t

smooth3 (x, t, i) Returns a third order exponential
smooth of x over time t starting at i

smoothN (x, t, n) Returns an n’th order exponential
smooth of x over time t
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smoothN (x, t, n,
i)

Returns an n’th order exponential
smooth of x over time t starting at i

forecast (x, t, h) Forecasts for x over the time horizon
h using an average time t

trend (x, t, i) Returns the fractional change rate of x
using the average time t and starting
with i

Here thedelay-like functions have the following idea, where thedelayN
functions are a generalization of this rule. If you will compare these
functions with other simulation software tools, then please note that the
delayN functions have no effect of the discrete operator that may implic-
itly present in some other tools. In case of need, this operator can be added
in the equations manually.

Definition

D1=delay(x, t) if and only if
D1=1/t * integ(x - D1, x*t);

D1I=delay(x, t, i) if and only if
D1I=1/t * integ(x - D1I, i*t);

D3_3=delay3(x, t) if and only if
D3_3=1/(t/3) * integ(D3_2 - D3_3, x*t/3);
D3_2=1/(t/3) * integ(D3_1 - D3_2, x*t/3);
D3_1=1/(t/3) * integ(x - D3_1, x*t/3);

D3I_3=delay3(x, t, i) if and only if
D3I_3=1/(t/3) * integ(D3I_2 - D3I_3, i*t/3);
D3I_2=1/(t/3) * integ(D3I_1 - D3I_2, i*t/3);
D3I_1=1/(t/3) * integ(x - D3I_1, i*t/3);

For example, figure 5.1 demonstrates the first-order and third-order
delay functions for the following input and time period.

Example

x=sin(time);
t=40*dt;
dt=0.025;



5.6. FUNCTIONS 45

Figure 5.1: The first-order delay, D1, and third-order delay function, D3_3,
for the specified input, x, and time period.

The smooth-like functions have the next idea, where the smoothN func-
tions are a generalization of the following rule. If you will compare these
functions with other simulation software tools, then please note that the
smoothN functions have no effect of the discrete operator that may im-
plicitly present in some other tools. In case of need, this operator can be
added in the equations manually.

Definition

S1=smooth(x, t) if and only if
S1=integ((x - S1)/t, x);

S1I=smooth(x, t, i) if and only if
S1I=integ((x - S1I)/t, i);
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S3_3=smooth3(x, t) if and only if
S3_3=integ((S3_2 - S3_3)/(t/3), x);
S3_2=integ((S3_1 - S3_2)/(t/3), x);
S3_1=integ((x - S3_1)/(t/3), x);

S3I_3=smooth3(x, t, i) if and only if
S3I_3=integ((S3I_2 - S3I_3)/(t/3), i);
S3I_2=integ((S3I_1 - S3I_2)/(t/3), i);
S3I_1=integ((x - S3I_1)/(t/3), i);

The delay and smooth functions behave different when the time period
is changing.

The forecast and trend functions have the following definition, where
the init operator returns the initial value of the expression at start time of
simulation.

Definition

forecast(x, t, h) = x * (1 + (x / smooth(x, t) - 1) / t * h);

trend(x, t, i) = (x / smooth(x, t, init(x) / (1 + i * init(t))) - 1) / t;

Table 5.10: Financial Functions

npv (s, r, i, f) Returns the Net Present Value (NPV)
of stream s computed using the speci-
fied discount rate r, the initial value i
and some factor f (usually 1)

npve (s, r, i, f) Returns the Net Present Value End of
period (NPVE) of stream s computed
using the specified discount rate r, the
initial value i and some factor f

In VisualAivika the financial functions have the following definition.

Definition

npv=npv(s, r, i, f) if and only if

npv = (accum + dt * s * df) * f;
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df = integ(- df * r, 1);
accum = integ(s * df, i);

npve=npve(s, r, i, f) if and only if

npve = (accum + dt * s * df) * f;
df = integ(- df * r / beta, 1 / beta);
accum = integ(s * df, i);
beta = 1 + r * dt;

Table 5.11: Simulation Operators

discrete (x) It returns a value of x, which doesn’t
change except of the integration dt
intervals regardless of the integration
method used

init (x) It returns the initial value of x

The init operator returns the initial value for the integral. Also it re-
turns the Block.identity block for any block as well as Block.terminate
for any block chain. Finally, it returns the Stream.empty computation for
any stream.

Unlike other simulation software tools, VisualAivika has slightly non-
standard operators discrete and init. They are related to the very simu-
lation engine of VisualAivika. Any numeric expression can have the initial
value. Also we can treat any numeric expression as something that would
be updated as if the Euler’s method was applied. Usually, you do not need
to apply these operators in your models. Moreover, these two last oper-
ators are specific to VisualAivika and they are not transferrable between
different simulation software tools.

5.7 Ranges

A range is defined by two integer expressions: the low index of the range
and the high index of the range. The expressions must be delimited by
two dots.
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Example

N = 10;

I_Range = 1..N;
J_Range = 1..5;

The ranges can be defined on the diagram like other variables and then
be used in the equations. They are needed for arrays.

5.8 Arrays

To define an one-dimensional array, you can use a special syntax:

[ Element | Index <- Range ]

Here the element expression can depend on the index which values will
be received from the specified range.

This syntax is generalized for other dimensions too. For example, a
two-dimensional array can be defined by adding another index:

[ Element | Index1 <- Range1, Index2 <- Range2 ]

VisualAivika supports up to 5 dimensions.
To refer to an element of the one-dimensional array by the specified

index, you can use a subscript like this:

Array[Index]

Similarly, the two-dimensional array element can be referenced by two
indices:

Array2D[Index1, Index2]

The rule is generalized for other dimensions too.
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Example

n = 51;

C = [ if (i == 0) or (i == n + 1) then 0 else M[i] / v | i <- 0..n+1 ];
M = [ integ (q + k*(C[i-1] - C[i]) + k*(C[i + 1] - C[i]), 0) | i <- 1..n ];

q = 1;
k = 2;
v = 0.75;

In this example C and M are one-dimensional arrays that have different
indices. The C array has values C[0], . . . , C[n+1], while array M has values
M[1], . . . , M[n].

By the way, the ranges could be defined as separate variables. For
simplicity, here the ranges are defined within the arrays. The both methods
are acceptable.

5.8.1 Functions for Arrays and Ranges

The following functions are defined for the arrays and ranges.

Table 5.12: Functions for Arrays and Ranges

length (a) Returns the total element count for the speci-
fied range or array a

length (a,
d)

Returns the element count for the specified
array a and dimension d starting from 0

low (a) Returns the low index for the specified range
or one-dimensional array a

low (a, d) Returns the low index for the specified array
a and dimension d starting from 0

high (a) Returns the high index for the specified range
or one-dimensional array a

high (a, d) Returns the high index for the specified array
a and dimension d starting from 0

min (a) Returns the minimal element of the specified
array a

max (a) Returns the maximal element of the specified
array a
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sum (a) Returns a sum of the elements for the specified
array a

prod (a) Returns a product of the elements for the spec-
ified array a

mean (a) Returns an average value for the specified ar-
ray a

The last functions are aggregating. It is useful that we can create inter-
mediate arrays to pass in them to these functions.

The following example is an equivalent to [Vensim 5 Reference Manual,
page 30, example 3], from the documentation of Vensim[3].

Example

efficiency = prod(factor_efficiency);
US_population = sum(population);
revenue = [ sum([ sales[c, p] * price[p, b] | p <- product ]) |

c <- country, b <- brand ];

Please note how an intermediate array is created, when summing the
revenue.

The next example is related to the Theory of Games. It calculates a max-
imin and minimax by the specified matrix of dimension n×n, respectively.

Example

max_min = max([ min([ A[i,j] | j <- 1..n ]) | i <- 1..n ])
min_max = min([ max([ A[i,j] | j <- 1..n ]) | i <- 1..n ])

Here the temporary arrays are created only once at the very beginning
of the simulation run.

The arrays can define the block computations as well as resources and
queues. Then we can access to them by index.

5.8.2 Array Initialization

Some arrays can be defined in a table form without direct using ranges and
indices. There is a simplified syntax for that.
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Example

A1 = [0, 1, 2, 3, 4, 5];
A2 = [[0, 1], [2, 3], [4, 5]];
A3 = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]];

Only such arrays will always have indices starting from zero.

5.8.3 Plotting Arrays on Charts

The arrays can be plotted on charts. For example, the revenue array defined
in section 5.8.1 through aggregation looks like figure 5.2.

Figure 5.2: When plotting arrays on the chart, each element has its own
subscript.
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5.9 Sensitivity Analysis

As it was mentioned before, there are predefined variables runIndex and
runCount that return the current run index, starting from zero, and the
total run count for the Monte-Carlo simulation experiment, respectively.

It is important that the runIndex variable is constant within the simula-
tion run, but then it is updated for another run. There are similar random
parameters that have the same property. They are constant within the
current run, but they are updated for another run.

Table 5.13: Random Parameters

randomParam (a, b) Returns the uniform random pa-
rameter between a and b

randomIntParam (a, b) Returns the integer uniform ran-
dom parameter between a and
b

triangularParam (a, m,
b)

Returns the triangular random
parameter between a and b with
median m

normalParam (m, n) Returns the normal random pa-
rameter with mean m and vari-
ance n

exponentialParam (m) Returns the exponential random
parameter with mean m

erlangParam (b, m) Returns the Erlang random pa-
rameter with scale b and integer
shape m

poissonParam (m) Returns the Poisson random pa-
rameter with mean m

binomialParam (p, n) Returns the binomial random
parameter on n trials of proba-
bility p

Such parameters are useful for providing the Sensitivity analysis. They
can be used in the equations.

By redefining some constants as random external parameters, we can
test the model for stability. For that, VisualAivika supports the Monte-
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Carlo simulation to provide the Sensitivity Analysis. The results of this
analysis can be displayed on charts like figure 5.3, where the Deviation
Chart option is used for the Graph Element.

Figure 5.3: The chart shows how stable is the model relative to changes of
the external random parameters.

Furthermore, combining the array initialization syntax and built-in
variables runIndex and runCount, we can specify sampling for the ex-
ternal parameters. An idea is quite simple. We define an array with values
and then refer to the array by the run index, probably, bound by the array
length.

Example

A = [[1, 2, 3],
[2, 3, 1],
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[3, 1, 2]];

Sample = mod(runIndex, length(A, 0));

X1 = A[Sample, 0];
X2 = A[Sample, 1];
X3 = A[Sample, 2];

5.10 Transacts

The block computations process transacts. Most of the blocks take expres-
sions that can have access to the transact attributes by name, which can be
an arbitrary identifier.

Table 5.14: Examples of the Transact Attributes

transact.attribute Access to the "attribute" attribute
of the transact

transact.ABC Access to the "ABC" attribute of
the transact

The transact can have an arbitrary number of attributes.
When splitting the transact into copies, the changes of transact at-

tributes do not affect other transacts from the same assembly set.

5.11 Stream of Arrival Events

Before creating transacts by the generator block, the corresponding arrival
events have to come in the simulation model outside. Such events are
defined with help of the Stream computation.

Table 5.15: Stream Computation

Stream.empty Returns an empty stream that
does not produce arrival events

Stream.take(s, n) Takes the specified number n of
arrival events from the stream s
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Stream.random(a, b) Returns a stream of arrival
events with uniform random de-
lays between a and b

Stream.randomInt(a, b) Returns a stream of arrival
events with integer uniform ran-
dom delays between a and b

Stream.triangular(a,
m, b)

Returns a stream of arrival
events with triangular random
delays between a and bwith me-
dian m

Stream.normal(m, n) Returns a stream of arrival
events with normal random de-
lays with mean m and deviation
n

Stream.exponential(m) Returns a stream of arrival
events with exponential random
delays with mean m

Stream.erlang(b, m) Returns a stream of arrival
events with Erlang random de-
lays with scale b and integer
shape m

Stream.poisson(m) Returns a stream of arrival
events with Poisson integer ran-
dom delays with mean m

Stream.binomial(p, n) Returns a stream of arrival
events with binomial random
delays on n trials of probability
p

To create the specified number of arrival events, say 15, at the start time
of simulation, you can create a stream by the following example.

Example

S = Stream.take(Stream.random(0, 0), 15);

Here we create an infinite stream and then take only 15 initial arrival
events from it.
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5.12 Generator Block

The generator block computation can take the stream of arrival events,
take the block chain and then starts generating and processing of transacts.
Usually, this happens implicitly, when applying the Block.runByStream
function, but the information about the generator blocks should be pro-
vided, nevertheless.

Table 5.16: Generator Block

GeneratorBlock.byStream(s) Returns a new genera-
tor block by the specified
stream s of arrival events

5.13 Block Computation

The transact processing is performed within blocks. The block can delay
the transacts, change them and finally destroy. The blocks are composable
in that sense that we can create a chain of blocks, which can be even infinite
or have loop-backs in case of need.

The composion operator looks like b1 >>> b2, where the transacts are
initially processed by block b1 and then by block or block chain b2.

The difference between the ordinary block and block chain is that the
block chain either terminates the processing or has an infinite loop. On the
contrary, the block passes the transact further, possibly by modifying one
of its attributes.

The block computations can be branched with help of the Block.select
operator, or a few block computations can be united into one computation
with help of the composition operator.

The block composition is opposite to the direction in which the transacts
are handled!
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Table 5.17: Basic Block Computation

Block.select(if x then y
else z)

Returns a block chain that
processes transacts by the
block chain y if condition x
is true, otherwise processes
them by the block chain z

Block.terminate Returns a block chain that
finishes the processing of
transacts

Block.identity Returns a block that just
passes input transacts fur-
ther

Block.transfer (b) Returns a block chain that
redirects the processing of
transacts to the specified
block chain b. It allows cre-
ating loop-backs

Block.assign
(transact.attribute <-
v)

Returns a block that as-
signs the specified transact
attribute to value v, when
processing the transact

Block.advance (v) Returns a block that holds
every transact for the spec-
ified time interval v, which
can be an expression that
can depend on the transact
attributes

Block.priority(p) Returns a block that as-
signs a new priority p to
transacts, where p can be
an expression that can de-
pend on the transact at-
tributes

The following example creates a block chain that holds every transact
for 10 time units, then holds for the time interval calculated from the
expression and then finally terminates.
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Example

B = Block.advance(10) >>>
Block.advance(20 + transact.SomeDelay) >>>
Block.terminate;

Below is another example that defines the simplest infinite loop. The
Block.transfer function allows the simulator to cut the circular depen-
dency. Otherwise, the equation could not be resolved.

Example

B = Block.transfer(B);

To save the current modeling time in the arbitrary ArrivalTime at-
tribute, we can use the next example. Then the transact is passed to the
specified block chain.

Example

B = Block.assign(transact.ArrivalTime <- time) >>> B2;

Here is a small trick. If the block chain consists of multiple blocks then
it makes sense to name them with help of the same identifiers, which will
differ by some suffix that will indicate to the step number.

Example

B1 = Block.advance(10) >>> B2;
B2 = Block.advance(20) >>> B3;
B3 = Block.advance(30) >>> B4;
B4 = Block.terminate;

Then such equations will appear in the Equations tab sequentially one
by another. The equations are sorted by their name.

Finally, the next example shows how to create two branches B2 and
B3 from the same computation, where the decision depends on the ran-
dom number generator. Here we could check the available resources, for
example.
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Example

B = Block.select(if random(0, 1) < 0.3 then B2 else B3);

On the contrary, if we have two block computations B4 and B5, then we
can redirect the both of them to the same block chain B as illustrated below.

Example

B8 = B4 >>> B;
B9 = B5 >>> B;

The both transact processing paths will merge into one.

5.14 Running Blocks

Provided some block chain, we can run the processing of transacts by that
block chain. For that we need a generator block, which can be created by
the stream of arrival events.

Table 5.18: Running Block Computation

Block.run(g, b) Returns an action that can be a
subject of applying the do! op-
erator to run the processing of
transacts by block chain b, where
the transacts are prepared by the
generator block g

Block.runByStream(s,
b)

Returns an action that can be a
subject of applying the do! op-
erator to run the processing of
transacts by block chain b, where
the transacts are received from
stream s

Here the latter function is just a shorthand for calling the former one
with help of Block.run(GeneratorBlock.byStream(s), b).

The both functions return an action that should be performed yet with
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help of the do! operator, which makes the execution explicit in the equa-
tions.

The following example illustrates the simplest complete model, but
which processes nothing.

Example

A = do! Block.runByStream(Stream.empty, Block.terminate);

Here the empty arrival stream is processed by the termination block
chain. Nothing happens. But it demonstrates the main idea.

Below is another example.

Example

S = Stream.exponential(5);
B = Block.advance(3) >>> Block.terminate;
A = do! Block.runByStream(S, B);

The do! operator can be applied within array items too.

Example

S = [ Stream.exponential(i) | i <- 5..10 ];
B = [ Block.advance(i - 2) >>> Block.terminate | i <- 5..10 ];
A = [ do! Block.runByStream(S[i], B[i]) | i <- 5..10 ];

5.15 Queue

VisualAivika introduces some entities for gathering statistics. Some of
such entities is a queue. The transact may enqueue and then dequeue.
VisualAivika counts each of these operations.

Table 5.19: Queue Constructor

Queue.create() Creates a new queue instance

To enque and dequeue transacts, we have to use the corresponding
block computations. These computations have an optional increment and
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decrement parameters, which are equal to 1 by default.

Table 5.20: Queue Operations

Block.queue(q) Returns a block that enqueues
the transacts in queue q with the
content increment equal to 1

Block.queue(q, n) Returns a block that enqueues
the transacts in queue q with the
specified content increment n

Block.depart(q) Returns a block that dequeues
the transacts from queue q with
the content decrement equal to 1

Block.depart(q, n) Returns a block that dequeues
the transacts from queue q with
the specified content decrement

For example, we can enqueue the transacts, delay them and then de-
queue. Usually, we also can try to acquire some resource right after en-
queueing, but the resources are described further.

Example

Q = Queue.create();
B = Block.enqueue(Q) >>>

Block.advance(12 + random(0, 10) + transact.ABC) >>>
Block.depart(Q) >>> B2;

At any modeling time we can receive the information about the queue
properties, for example, to plot them on the chart such as Deviation chart.

Table 5.21: Queue Properties

Queue.content(q) Returns the queue content value
at the current modeling time

Queue.contentStats(q) Returns the queue content statis-
tics summary at the current
modeling time. The statistics
value is time persistent (the tim-
ing statistics)
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Queue.enqueueCount(q) Returns the enqueue count value
for queue q at the current mod-
eling time

Queue.zeroEntry-
EnqueueCount(q)

Like the former function, but re-
turns such the enqueue count,
where there was no delay be-
tween dequeueing from the
queue and enqueueing

Queue.waitTime(q) Returns the queue wait time
statistics summary at the cur-
rent modeling time. The statis-
tics value is based upon observa-
tions (the sampling statistics)

Queue.nonZeroEntry-
WaitTime(q)

Like the former function, but
returns such the statistics sum-
mary, where there was a delay
between dequeueing from the
queue and enqueueing

For example, we create a temporary variable WaitTime to save the
statistics, which can be already added to the deviation chart.

Example

Q = Queue.create();
WaitTime = Queue.waitTime(Q);

5.16 Facility

Another kind of entities supported by VisualAivika is a facility. The fa-
cility is a resource that may have only one owner. The facility can be
seized, preempted, released and returned. When preempting the facility,
the old owner can be transferred to another block chain to proceed with its
execution. It allows us to model quite a complex behaviour.



5.16. FACILITY 63

Table 5.22: Facility Constructor

Facility.create() Creates a new facility instance

To affect the facility by transacts, there are the corresponding block
computations. Some of these computations may have optional parameters.
The most complex behaviour is inherent in the Block.preempt function.

Table 5.23: Facility Operations

Block.seize(f) Returns a block that tries to seize
facility f. Later, the facility must
be released by the transact

Block.release(f) Returns a block that releases fa-
cility f, which was seized by the
transact earlier

Block.preempt(f) Returns a block that tries to
preempt the specified facility f.
Later, the facility must be re-
turned by the transact. See be-
low

Block.preempt(f,
priorityMode=f1,
removalMode=f2)

Returns a block that tries to
preempt the specified facility f,
where the priority mode and re-
moval mode flags f1 and f2 are
optional. By default, the both
boolean flags are turned off. See
below

Block.preempt(f,
priorityMode=f1,
removalMode=f2,
transfer(b) via
transact.attribute)

Like the former function, but if
the transact is preempted then
it will be transferred to the
block chain b, where the speci-
fied transact attribute will con-
tain the remaining time, during
which the transact would had to
be hold yet in the delay. See be-
low
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Block.preempt(f,
transfer(b) via
transact.attribute)

A more simple form of the for-
mer function with default mode
flags

Block.return(f) Returns a block that returns fa-
cility f, which was preempted by
the transact earlier

The most popular use case is to count the queue statistics, when trying
to acquire the facility, simulate some activity with help of the delay and
then release or return the facility. Here the transact will be blocked in case
of the resource sufficiency, which will increase the wait time for the queue.

Example

Q = Queue.create();
F = Facility.create();
B = Block.queue(Q) >>>

Block.seize(F) >>>
Block.depart(Q) >>>
Block.advance(random(10, 20)) >>>
Block.release(F) >>> B2;

Like it was true for the queue, we can request for the facility properties
and statistics during the simulation at any modeling time.

Table 5.24: Facility Properties

Facility.isInter-
rupted(f)

Returns a boolean flag indicat-
ing whether the facility f is in-
terrupted at the current model-
ing time

Facility.count(f) Returns the facility count value
at the current modeling time

Facility.countStats(f) Returns the facility count statis-
tics summary at the current
modeling time. The statistics
value is time persistent (the tim-
ing statistics)
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Facility.captureCount(f) Returns the capture count value
for the facility f at the current
modeling time

Facility.utilisation-
Count(f)

Returns the utilisation count
value for the facility f at the cur-
rent modeling time

Facility.utilisation-
CountStats(f)

Returns the facility utilisation
count statistics summary at the
current modeling time. The
statistics value is time persistent
(the timing statistics)

Facility.queueLength(f) Returns the queue length for the
facility f at the current modeling
time

Facility.queueLength-
Stats(f)

Returns the facility queue length
statistics summary at the current
modeling time. The statistics
value is time persistent (the tim-
ing statistics)

Facility.totalWait-
Time(f)

Returns the total wait time for
the facility f at the current mod-
eling time

Facility.waitTime(f) Returns the facility wait time
statistics summary at the cur-
rent modeling time. The statis-
tics value is based upon observa-
tions (the sampling statistics)

Facility.totalHolding-
Time(f)

Returns the total holding time
for the facility f at the current
modeling time

Facility.holdingTime(f) Returns the facility holding time
statistics summary at the cur-
rent modeling time. The statis-
tics value is based upon observa-
tions (the sampling statistics)

As before, we can save any of these properties in some variable and
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then display the result.
We can request for any of the properties during simulation. For exam-

ple, we can test whether the facility is interrupted currently. If the facility is
interrupted then we can terminate the transact processing as shown below
in the example.

Example

Q = Queue.create();
F = Facility.create();
B = Block.select(if Facility.isInterrupted(F) then Busy else B2);
B2 = Block.preempt(F, priorityMode=true,

transfer(Add) via transact.P5) >>> B3;
...
Busy = Block.terminate;

Also here the preempted transact, the old owner of the facility, will be
redirected to block chain Add, where the transact attribute with name "P5"
will contain the remaining time value, during which the transact would
had to be hold yet in the delay.

Section A in the Appendix provides some technical details of that how
the facility preemption is implemented in the simulator.

5.17 Storage

Another kind of resources supported by VisualAivika is a storage. The
storage has a capacity. Also the storage can be borrowed by multiple
transacts, while it has the available content.

Table 5.25: Storage Constructor

Storage.create(n) Creates a new storage instance
by the specified capacity n

To use the storage, there are the corresponding block computations.
Some of these computations may have optional parameters.
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Table 5.26: Storage Operations

Block.enter(s) Returns a block that tries to enter
storage s with the content decre-
ment equal to 1. Later, the stor-
age must be left by the transact

Block.enter(s, n) Returns a block that tries to en-
ter storage s with the specified
content decrement n. Later, the
storage must be left by the trans-
act

Block.leave(s) Returns a block that leaves stor-
age s with the content increment
equal to 1. The storage had to
be entered into by the transact
earlier

Block.leave(s, n) Returns a block that leaves stor-
age s with the specified content
increment n. The storage had to
be entered into by the transact
earlier

When trying to enter the storage, if the content is not sufficient then
the transact is blocked. But this behavior is much simpler than the facility
seizing or preemption. Another difference is that the content changes can
differ from 1.

The usual approach is to count the queue statistics, when trying to
enter the storage, simulate some activity with help of the delay and then
leave the storage. Here the transact will be blocked in case of the resource
sufficiency, which will increase the wait time for the queue.

Example

Q = Queue.create();
S = Storage.create();
B = Block.queue(Q) >>>

Block.enter(S) >>>
Block.depart(Q) >>>
Block.advance(random(10, 20)) >>>
Block.leave(S) >>> B2;



68 CHAPTER 5. MODELING LANGUAGE

The storage has its own properties. We can request the storage for them
at any modeling time.

Table 5.27: Storage Properties

Storage.capacity(s) Returns the storage capacity
Storage.content(s) Returns the storage content

value at the current modeling
time

Storage.contentStats(s) Returns the storage content
statistics summary at the cur-
rent modeling time. The statis-
tics value is time persistent (the
timing statistics)

Storage.useCount(s) Returns the total number of
cases for storage s, when the
content had been decreased

Storage.usedContent(s) Returns the total used content
value for storage s at the current
modeling time

Storage.content-
Utilisation(s)

Returns the storage content util-
isation value at the current mod-
eling time

Storage.content-
UtilisationStats(s)

Returns the storage content util-
isation statistics summary at the
current modeling time. The
statistics value is time persistent
(the timing statistics)

Storage.queueLength(s) Returns the queue length for the
storage s at the current model-
ing time

Storage.queueLength-
Stats(s)

Returns the storage queue
length statistics summary at the
current modeling time. The
statistics value is time persistent
(the timing statistics)
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Storage.totalWaitTime(s) Returns the total wait time for
the storage s at the current mod-
eling time

Storage.waitTime(s) Returns the storage wait time
statistics summary at the cur-
rent modeling time. The statis-
tics value is based upon obser-
vations (the sampling statistics)

Storage.averageHolding-
Time(s)

Returns the average holding
time for the storage s at the cur-
rent modeling time

We can save any of these properties in some variable and then display
the result.

5.18 Assembly Set

Every transact created by the Generator Block has its own assembly set.
At the same time, during simulation the transacts can be splitted into
multiple copies, but each copy will belong to the same assembly set. Then
such transacts can be assembled into one, or they can delayed before all
them will be gathered together.

Also we can create so called a Match Chain, so that some transact could
be delayed until another one from the same assembly set would match the
common match chain instance.

Table 5.28: Match Chain Constructor

MatchChain.create() Creates a new match chain in-
stance

There are the following block computations to use the assembly set
that will be common for the whole group of transacts, which were splitted
earlier from the same transact.
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Table 5.29: Assembly Set Operations

Block.split(n, b) Returns a block that splits ev-
ery transact into n copies, each
of them is transfered to the spec-
ified block chain b.
Every copy will belong to the
same assembly set of the source
transact

Block.assemble(n) Returns a block that assembles n
transacts from the same assem-
bly set in one transact, after they
were splitted earlier

Block.gather(n) Returns a block that delays and
gathers n transacts from the
same assembly set, after they
were splitted earlier.
After n transacts are gathered,
they continue their execution

Block.matchChain(c) Returns a block that delays the
transact until another transact
from the same assembly set will
call a similar block with the same
match chain c

The following example demonstrates how we can split and then gather
the transacts.

Example

Worker = Facility.create();

S2 = Block.seize(Worker) >>>
Block.advance(random(8 - 3, 8 + 3)) >>>
Block.split(1, S2) >>>
Block.release(Worker) >>>
Block.priority(1) >>>
Block.gather(24) >>> S3;

It captures the facility to make transact copies with delay. Then the
priority increases and 24 transacts are gathered. Actually, in this example
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only one source initial transact is used, but the example creates a plenty of
its copies.

5.19 Nested Modules

The model can contain modules that can be nested. Each module defines
its own name space for variables.

VisualAivika uses modules to keep variables from the same diagram in
a separate module.

Example

// the global variable
A = 1;

module M1 {

// variable M1.B
B = A + 1;

module M2 {

// variable M1.M2.C
C = 2 * B;

// use the qualified name to M1.B
D = C - M1.B;

}
}
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Chapter 6

Displaying Results

The Result Chart element from the diagram toolbar allows you to see the
simulations results in a preferred way. Figure 6.1 shows the corresponding
element on the toolbar. Then the result output view can be a chart, or
table with CSV data, or something else. The element specifies exactly how
the results will be represented on its view. The diagram can contain an
arbitrary number of chart elements.

Figure 6.1: The Result Chart element on the diagram toolbar.

6.1 Deviation Chart

The Deviation Chart view is the most universal view, which is applicable
both to single and multiple runs. If the run is single, then the Deviation
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Chart becomes similar to the Time Series chart as described in section 6.2.
But if the Monte-Carlo simulation experiment is used, then the Deviation
Chart shows the trend and confidence intervals by the 3-sigma rule.

Figure 6.2 illustrates how we can select the corresponding Deviation
Chart view on the Chart editor. This editor is opened right after you select
any Result Chart element on the diagram. Here you should define the
Result Type field value equal to Deviation Chart and then click on the Apply
button, which is not shown on the figure.

Figure 6.2: Selecting the Deviation Chart view.

Figure 6.3 shows how the deviation chart can look on the diagram after
the simulation is finished.

The Deviation Chart view can show the statistics values too. For ex-
ample, it can show the queue wait time or facility content statistics. Here
we suppose that the statistics values are distributed equally for different
simulation runs, but these runs are independent from each other.
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Figure 6.3: The Deviation Chart example.

6.2 Time Series

The Time Series chart displays the ordinary chart, where the series depend
on the modeling time. If the Monte-Carlo method is used, then the corre-
sponding number of charts will be plotted, by one for each run. Hence,
please use the Time Series chart only for single run, or for the Monte-Carlo
method with a small number of runs!

Like shown in figure 6.2, to dislay the Time Series chart, now it is
necessary to select the Result Type field equal to Time Series, which is selected
by default.

Figure 6.4 shows how the Time Series chart can look on the diagram for
a single simulation run.
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Figure 6.4: The Time Series example.

6.3 XY Chart

The XY Chart is similar to the Time Series chart described in the previous
section 6.2. Only the first selected series becomes the X coordinate for the
chart. As before, if the Monte-Carlo method is used, then the correspond-
ing number of charts will be plotted, by one for each run. Hence, please
use the XY Chart view only for single run, or for the Monte-Carlo method
with a small number of runs!

Like shown in figure 6.2, to dislay the XY chart, now it is necessary to
select the Result Type field equal to XY Chart.

Figure 6.5 shows how the XY Chart can look on the diagram for a single
simulation run.
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Figure 6.5: The XY Chart example.

6.4 CSV Table

The CSV Table view is destined for exporting CSV data to other applica-
tions, or saving the data in the file. A text block component is displayed,
from which you can copy the corresponding CSV data. If the Monte-Carlo
method is used, then the corresponding number of components will be
created, by one for each run. Hence, please use the CSV Table view only
for single run, or for the Monte-Carlo method with a small number of runs!

Like shown in figure 6.2, to dislay the CSV table, it is necessary to select
the Result Type field equal to Table.

Figure 6.6 shows how the CSV Table can look on the diagram.
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Figure 6.6: The CSV Table example.

6.5 Last Values

The view of Last Values is destined for displaying the series values at the
final time point of simulation. If the Monte-Carlo method is used, then
the corresponding number of components will be created, by one for each
run. Hence, please use the Last Values only for single run, or for the
Monte-Carlo method with a small number of runs!

Like shown in figure 6.2, to dislay the Last Values, it is necessary to
select the Result Type field equal to Last Values.

Figure 6.7 shows how the corresponding element can look on the dia-
gram.

When displaying the statistics summary, this element shows also the
minimal and maximal values as well as the average and deviation. More-
over, the element is able to display all the properties together for the queue,
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Figure 6.7: The example of representing the Last Values.

facility and storage.

6.6 Last Value Histogram

The Last Value Histogram view is destined for plotting the histogram
by series values at the final modeling time, when using the Monte-Carlo
method with multiple runs.

Like shown in figure 6.2, to dislay the Last Value Histogram, it is
necessary to select the Result Type field equal to Last Value Histogram.

Figure 6.8 shows how the corresponding element can look on the dia-
gram.

6.7 Last Value CSV Table

When applying the Monte-Carlo method, the Last Value CSV Table view
collects data at final time points, and it is destined for exporting the data to
other applications, or saving the data in the file. A text block component
is displayed, from which you can copy the corresponding CSV data.

Like shown in figure 6.2, to dislay the Last Value CSV Table, it is
necessary to select the Result Type field equal to Last Value Table.

Figure 6.9 shows how the corresponding element can look on the dia-
gram.
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Figure 6.8: The Last Value Histogram example.

6.8 Last Value Statistics Summary

When applying the Monte-Carlo method, the Last Value Statistics Sum-
mary view collects data at final time points and presents the results on the
corresponding component.

Like shown in figure 6.2, to dislay the Last Value Statistics Summary, it
is necessary to select the Result Type field equal to Last Value Statistics.

Figure 6.10 shows how the corresponding element can look on the
diagram.

There is one subtle thing related to displaying the count parameter
for the time persistent statistics. Before displaying the time persistent
statistics, the latter is transformed to a similar representation based upon
observations, where the count parameter becomes to show a completely
different value, while the rest parameters remain correct. So, this element
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Figure 6.9: The Last Value CSV Table example.

does not show the count parameter for the time persistent statistics. In
other cases, the count parameter is what it is meant to be.
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Figure 6.10: The Last Value Statistics Summary example.



Appendix A

Facility Implementation Details

These sections are provided as a reference material for more deep under-
standing of that how the model is simulated.

A.1 Facility Preemption

Below is described the logic behind the Block.preempt computation.
The optional parameter priorityMode specifies whether the Priority or

Interrupt mode (default) is used. The transfer parameter can define a
block chain, where the preempted transact is passed to in case of preemp-
tion. The removalMode parameter specifies, whether the Remove mode is
used (not used by default).

Conceptually, the Block.preempt computation tries to mimic the be-
haviour of the PREEMPT block from the GPSS modelling language, although
the implementation in VisualAivika is based on completely different prin-
ciples that have roots in functional programming.

The facility may have one owner only, i.e. a transact that owns the
facility, or the facility has no owner at all. Moreover, the facility has three
queues: Delay chain, Interrupt chain and Pending chain. The Delay chain
and Pending chain tend to be similar to FIFO, while the Interrupt chain is
close to LIFO, but these queues use the priorities. The FIFO queues store
the corresponding transact computations along with transacts themselves.

The algorithm applied by the Block.preempt computation is as follows.

1. If the facility had no owner then the current transact becomes the
owner, but as the owner which is marked as non-interrupting.
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2. Otherwise, if the priorityMode parameter is false (default) and the
current owner is interrupting then the current transact is marked as
interrupting and with its computation is added to the Pending chain
of the facility with the transact priority.

3. Otherwise, if the priorityMode parameter is true and the transact
priority is lower (less) than the owner’s priority, then the current
transact is marked as interrupting and with its computation is added
to the Delay chain of the facility with the transact priority.

4. Otherwise, if the removalMode parameter is false (default) then the
current transact displaces the owner. The current transact is marked
as interrupting. The previous owner is preempted and added to the
Interrupt chain with its priority.

Next time, when the previous owner will return from the Interrupt
chain and if the transfer parameter is not specified (default) then
that transact will capture the facility again and proceed with its exe-
cution from the block, where it was preempted.

Otherwise, if the transfer parameter specifies a block chain, then
the returned owner will be transferred to the corresponding block
chain, where the specified transact attribute will assign to the time
interval remained to hold the transact, starting from time at which
the previous owner was preempted.

5. If other cases fail, and hence removalMode is specified explicitly as
true, then the current transact becomes a new owner and it is marked
as interrupting. The previous owner is preempted and transferred
to the block chain returned by the specified transfer parameter,
which must define a block chain computation. The time remained
to hold the previous owner is passed through the corresponding
transact attribute. Now this transfer parameter is obligatory. No
Interrupt chain is used. The previous owner is removed at the current
modelling time.

A.2 Facility Seizing

The algorithm for the Block.seize computation is as follows.
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1. If the facility has another owner already, then the transact computa-
tion is blocked until that other owner releases or returns the facility.
In such a case, the current transact is marked as non-interrupting and
with its computation is added to the Delay chain of the facility with
the transact priority.

2. Otherwise, if the facility had no owner then the current transact
becomes the owner of the facility. This owner is marked as non-
interrupting and the transact proceeds with its execution.

A.3 Facility Release

The Block.release computation must match the Block.seize computa-
tion. In the rest, the releasing compution is similar to the facility return
procedure described next.

A.4 Facility Return

The Block.return computation must match Block.preempt. In the rest,
the facility releasing and returning computions have a similar behaviour.

The current transact must be the facility owner. The algorithm of se-
lecting another owner is as follows.

1. If the Pending chain of the facility is not empty and the top transact
computation is not cancelled then the corresponding transact is re-
moved from the queue and it becomes the owner. The Pending chain
is close to FIFO but uses priorities.

If the top computation was cancelled then the transact is also removed
from the queue, but the algorithm is repeated from start again.

2. Otherwise, if the Interrupt chain of the facility is not empty and
the top transact has a computation which is not cancelled, then the
corresponding transact is removed from the queue and it is selected
as a new owner.

Now if the transact was interrupted together with the transfer pa-
rameter then this parameter is used to transfer the transact compu-
tation to the corresponding block chain returned by the transfer
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parameter. The previous computation is cancelled and a new one
is created instead, which is already started with the specified block
chain. The Interrupt chain is close to LIFO but uses priorities.

If the transfer parameter was not specified then the transact pro-
ceeds with its execution from the computation at which the transact
was preempted.

If the top computation was cancelled then the transact is also removed
from the queue, but the algorithm is repeated from start again.

3. Otherwise, if the Delay chain of the facility is non-empty and the
top transact computation is not cancelled then the corresponding
transact is removed from the queue and it becomes the owner. The
Delay chain is close to FIFO but uses priorities.

If the top computation was cancelled then the transact is also removed
from the queue, but the algorithm is repeated from start again.

4. If all other cases fail then all three queues are empty and hence the
facility has no owner.
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