
VisualAivika Solver Manual

David E. Sorokin <davsor@mail.ru>,
Yoshkar-Ola, Mari El, Russia

October 16, 2024

mailto:davsor@mail.ru

Contents

1 Getting Started 3

2 Monte Carlo Experiment 7

3 Modeling Language 14
3.1 Simulation Specs . 14
3.2 Variables . 15
3.3 Equations . 15
3.4 Operators . 16
3.5 Constants . 16
3.6 Functions . 17
3.7 Ranges . 24
3.8 Arrays . 24

3.8.1 Functions for Arrays and Ranges 25
3.8.2 Array Initialization . 26

3.9 Sensitivity Analysis . 27
3.10 Nested Modules . 28

4 Experiment Views 30
4.1 Deviation Chart . 30
4.2 Time Series . 31
4.3 XY Chart . 32
4.4 CSV Table . 34
4.5 Last Values . 35
4.6 Last Value Histogram . 37
4.7 Last Value CSV Table . 38
4.8 Last Value Statistics Summary 39

1

Figure 1: Displaying simulation results in VisualAivika Solver.

2

Chapter 1

Getting Started

VisualAivika Solver is a free modeling tool for running models of System
Dynamics, which are essentially systems of ordinary differential equations
(ODE).

VisualAivika Solver has the simplistic GUI interface, where you define
the following model and experiment as demonstrated in figure 1.1.

starttime = 0;
stoptime = 10;
dt = 0.01;

ka = 1;
kb = 1;

A = integ(-ka * A, 100);
B = integ(ka * A - kb * B, 0);
C = integ(kb * B, 0);

experiment {
timeSeries {

series = [A, B, C];
width = 500;
height = 300;

}

csvTable {
series = [time, A, B, C];
width = 500;
height = 300;

}
}

These equations correspond to the following mathematical system of
equations described in the 5-Minute Tutorial of Berkeley-Madonna[1].

3

ȧ = −ka × a, a(t0) = 100,
ḃ = ka × a − kb × b, b(t0) = 0,
ċ = kb × b, c(t0) = 0,

ka = 1,
kb = 1.

We define the simulations specs that include the predefined variables:
starttime, stoptime and dt. They define the start time, the final time and
integration time step, respectively.

Then we define equation parameters ka and kb, after which the three
differential equations follow. They use the integ function that defines an
integral by the specified derivative and initial value.

In the end we define a simulation experiment that contains views. Each
view specifies how we want to see the simulation results. Here we define
two views. One view is destined for plotting the Time Series chart. Another
view is destined for displaying the CSV data that can be then easily copied
and exported to another application or saved in the file.

After we click on the Run button, the Results tab is activated and we
can look at the simulation results with help of those views that we defined
earlier, when specifying the simulation experiment in the Model tab. In
case of our model we receive the results as shown in 1.2.

Here we launched one simulation run only, but we can launch multiple
simulation runs whithin the same experiment.

4

Figure 1.1: The simplistic system of ordinary differential equations.

5

Figure 1.2: The results that correspond to the system of ordinary differential
equations.

6

Chapter 2

Monte Carlo Experiment

VisualAivika Solver supports the Monte Carlo simulation experiment.
Let us take the same equations from the previous chapter and add other

predefined variable runCount as shown in figure 2.1.

starttime = 0;
stoptime = 10;
dt = 0.01;

runCount = 3;

ka = 1;
kb = 1;

A = integ(-ka * A, 100);
B = integ(ka * A - kb * B, 0);
C = integ(kb * B, 0);

experiment {
timeSeries {

series = [A, B, C];
width = 500;
height = 300;

}

csvTable {
series = [time, A, B, C];
width = 500;
height = 300;

}
}

Here we said that the Monte Carlo experiment should have three sim-
ulation runs. Indeed, after we click on the Run button, we see that the

7

Results tab has changed as demonstrated in figure 2.2. Now we have triple
charts and triple CSV data, by one for each run.

It is not very useful to have identical charts and CSV data. We can
change this by making parameters ka and kb random that would be up-
dated randomly for each simulation run. They would be constant within
the run, but each run might have different values for these parameters.

To add the randomness, let us replace the equations for these parame-
ters:

ka = 1 + randomParam(-0.3, 0.3);
kb = 1 + randomParam(-0.2, 0.4);

Now ka has an uniform distribution in interval [0.7; 1.3], while kb
is distributed uniformly in interval [0.8, 1.4]. We could define the same
intervals directly without using the addition operator.

If we re-run the simulation experiment then we can notice that the
charts and CSV data will change and be different for each run.

But if we want to start 10000 simulation runs then it is not very produc-
tive to use such views that display the Time Series charts and CSV data.
Fortunately, there is the Deviation Chart view, which is ideal for the Monte
Carlo simulation. The deviation chart plots the trend and confidence in-
tervals by using the 3-sigma rule (based on Chebyshev’s inequality).

Let us launch 10000 simulations runs and display the Deviation Chart.
For that, we have to update the experiment definition as shown in figure
2.3.

starttime = 0;
stoptime = 10;
dt = 0.01;

runCount = 10000;

ka = 1 + randomParam(-0.3, 0.3);
kb = 1 + randomParam(-0.2, 0.4);

A = integ(-ka * A, 100);
B = integ(ka * A - kb * B, 0);
C = integ(kb * B, 0);

experiment {
deviationChart {

series = [A, B, C];
width = 500;
height = 300;

}
}

8

The results are displayed in figure 2.4. We can see that this system of
equations is quite stable. It converges regardless of the small perturbation
of the parameters.

9

Figure 2.1: The simplistic Monte Carlo experiment based on the system of
ordinary differential equations.

10

Figure 2.2: The simplistic Monte Carlo experiment results.

11

Figure 2.3: We define the Monte Carlo experiment with 10000 simulation
runs.

12

Figure 2.4: The trends and confidence intervals received with help of the
Monte Carlo experiment.

13

Chapter 3

Modeling Language

The VisualAivika modeling language allows you to specify dynamic sys-
tems. The model can consist of stocks and auxiliaries. The stock variable
can be an integral (reservoir). The auxiliary variable is a function of other
variables.

3.1 Simulation Specs

There are predefined variables that exist in each simulation:

• starttime defines the initial time;

• stoptime defines the final time;

• dt defines the integration time step;

• time returns the current integration time.

The first three variables can be defined explicitly for each model.
The current version of VisualAivika Solver supports the 4th order

Runge-Kutta method for numerical integration.
In addition, you can specify the number of simulation runs for the

Monte-Carlo simulation, which is reflected by the following predefined
variables:

• runIndex returns the current run index starting from 0;

• runCount returns the total number of simulation runs within the
experiment.

14

These two built-in variables are useful for planning the simulation
experiment, when providing the Sensitivity Analysis as shown in section
3.9 below.

The runCount variable can be defined explicitly.

3.2 Variables

The following list describes the variable types in VisualAivika.

• Auxiliary. Any variable that is defined as a function of other variables,
or a constant.

• Stock. The dynamic variable in the model. At present, it can be a
reservoir (integral) only.

• Flow. The variable that manages a stock. It can be either an inflow or
outflow, bidirectional or unidirectional.

• Table. A table function which parameters are the x- and y- coordinates.

• Range. An index range for arrays.

• Array. An array of other variables.

The variable name in VisualAivika is case sensitive. The first symbol
must be a letter or underscore. The next symbols can contain letters, digits
and underscore in any sequence.

Example

Total_Resources, Scope, x, y

3.3 Equations

The VisualAivika modeling language allows you to define the model by
writing a set of mathematical equations and expressions. The equations
can be written in any order. The order of computation is determined based
on dependencies between the variables.

VisualAivika uses standard algebraic expressions with the same rules
of precedence as those used by Java, C/C++ and other common languages.

Also VisualAivika supports standard mathematical functions and has
additional functions that make writing equations faster and simpler.

15

Example

y = integ (1 + 0.2 * y * sin (t) - 1.5 * t ^ 2, 0);
z = integ ((y - z)^2, 0);

Here the integ function returns an integral by the specified derivative
and initial value.

Example

Adequacy_of_Control_Resources =
Control_Resources / Desired_Control_Resources;

Each equation must be finished by the semicolon symbol.

3.4 Operators

VisualAivika supports standard binary and unary operators that observe
conventional precedence. The operators are shown in the tables below.

Table 3.1: Unary Operators

not Logical inversion
+ - Plus and minus

Table 3.2: Binary Operators

ˆ Arithmetic power
* / + - Arithmetic operators
< <= > >= Comparison
== != Equality and inequality
and or Conjunction and disjunction

3.5 Constants

VisualAivika defines the following constants.

Table 3.3: Built-in Constants

true Logical true

16

false Logical false
pi The value of π
infinity Represents a positive infinity
nan Represents a value that is not a number

3.6 Functions

Here is a summary table of the basic predefined functions.

Table 3.4: Basic Functions

abs (x) Returns the absolute value of x
sqrt (x) Returns the square root of x
int (x) Returns the largest whole number less

than or equal to x
round (x) Returns the number nearest to x
power (x, y) Returns the same as xy

mod (x, y) Returns the remainder of x/y
min (x1, x2, ...) Returns the minimum value of x1, x2,

. . .
max (x1, x2, ...) Returns the maximum value of x1, x2,

. . .
sum (x1, x2, ...) Returns the sum of x1, x2, . . .
mean (x1, x2, ...) Returns the average value of x1, x2,

. . .
sin (x) Returns the sine of x
cos (x) Returns the cosine of x
tan (x) Returns the tangent of x
arcsin (x) Returns the inverse sine of x
arccos (x) Returns the inverse cosine of x
arctan (x) Returns the inverse tangent of x
arctan (y, x) Returns the inverse tangent of (y/x)
sinh (x) Returns the hyperbolic sine of x
cosh (x) Returns the hyperbolic cosine of x
tanh (x) Returns the hyperbolic tangent of x
sinwave (a, t) Returns the sine wave of amplitude a

and period t
coswave (a, t) Returns the cosine wave of amplitude

a and period t
exp (x) Returns e raised to power x

17

log (x) Returns the natural (base e) logarithm
of x

log (x, y) Returns the logarithm of x in base y

The sinwave and coswave functions require some note. They are de-
fined as follows.

Definition

sinwave(a, t) = a * sin(2 * pi * time / t);
coswave(a, t) = a * cos(2 * pi * time / t);

Table 3.5: Random Number Generators

random (a, b) Returns the uniform random number
between a and b

normal (m, n) Returns the normal random number
with mean m and deviation n

binomial (p, n) Returns the binomial random number
on n trials of probability p

poisson (m) Returns the Poisson random number
with mean m

Table 3.6: Conditional Expression

if x then y else z Returns y if x is true, otherwise returns
z

Table 3.7: Miscellaneous Functions

step (h, t) Returns 0 until time t and then returns h
pulse (t, d) Returns the pulse of height 1 starting at time

t with duration d
pulse (t, d,
p)

Returns the pulse of height 1 starting at time
t with duration d and period p

ramp (s, t1,
t2)

Returns 0 until time t1 and then slopes until
time t2 and then holds s

These functions have the following definition. They use the discrete
operator described further. In short, the operator returns the value, which

18

doesn’t change except of the integration dt intervals regardless of the
integration method used.

Definition

step(h, t) = discrete(if time + dt/2 > t then h else 0);

pulse(t, d) = discrete(if (time + dt/2 > t) and (time + dt/2 < t + d)
then 1 else 0);

pulse(t, d, p) = pulse(t + (if (p > 0) and (time > t)
then round((time - t) / p)*p else 0), d);

ramp(s, t1, t2) = discrete(if (time + dt/2 > t1)
then (if (time - dt/2 < t2)

then s*(time - t1)
else s*(t2 - t1))

else 0);

Table 3.8: Interpolation

table ((x1, y1), (x2,
y2), ...)

Creates a table consisting of
points (x1, y1), (x2, y2), . . . ,
where the table can be used as a
function later

table ((x1, y1), (x2,
y2), ...) (x)

Lookup x in the list of points
(x1, y1), (x2, y2), . . . using
linear interpolation

step (t) Creates a discrete step-wise in-
terpolation function based on
the specified table t

step (table ((x1, y1),
(x2, y2), ...)) (x)

Lookup x in the list of points
(x1, y1), (x2, y2), . . . using
the discrete step-wise interpola-
tion

The table functions can be defined directly in equations.

Example

Effect_of_Scope_Stability_of_Rules =
table ((0, 0.5), (0.2, 0.535), (0.4, 0.585), (0.6, 0.675), (0.8, 0.82),

(1, 1), (1.2, 1.21), (1.4, 1.35), (1.6, 1.42), (1.8, 1.47),
(2, 1.5))

(Scope);

19

Table 3.9: Integral Functions

integ (d, i) Returns the integral of rate d and ini-
tial value i

delay (x, t) Returns a first order exponential delay
of x for time t conserving x

delay (x, t, i) Returns a first order exponential delay
of x starting with i for time t conserv-
ing x

delay3 (x, t) Returns a third order exponential de-
lay of x for time t conserving x

delay3 (x, t, i) Returns a third order exponential de-
lay of x starting with i for time t con-
serving x

delayN (x, t, n) Returns an n’th order exponential de-
lay of x for time t conserving x

delayN (x, t, n,
i)

Returns an n’th order exponential de-
lay of x starting with i for time t con-
serving x

smooth (x, t) Returns a first order exponential
smooth of x over time t

smooth (x, t, i) Returns a first order exponential
smooth of x over time t starting at i

smooth3 (x, t, i) Returns a third order exponential
smooth of x over time t

smooth3 (x, t, i) Returns a third order exponential
smooth of x over time t starting at i

smoothN (x, t, n) Returns an n’th order exponential
smooth of x over time t

smoothN (x, t, n,
i)

Returns an n’th order exponential
smooth of x over time t starting at i

forecast (x, t, h) Forecasts for x over the time horizon
h using an average time t

trend (x, t, i) Returns the fractional change rate of x
using the average time t and starting
with i

Here thedelay-like functions have the following idea, where thedelayN
functions are a generalization of this rule. If you will compare these
functions with other simulation software tools, then please note that the
delayN functions have no effect of the discrete operator that may implic-

20

itly present in some other tools. In case of need, this operator can be added
in the equations manually.

Definition

D1=delay(x, t) if and only if
D1=1/t * integ(x - D1, x*t);

D1I=delay(x, t, i) if and only if
D1I=1/t * integ(x - D1I, i*t);

D3_3=delay3(x, t) if and only if
D3_3=1/(t/3) * integ(D3_2 - D3_3, x*t/3);
D3_2=1/(t/3) * integ(D3_1 - D3_2, x*t/3);
D3_1=1/(t/3) * integ(x - D3_1, x*t/3);

D3I_3=delay3(x, t, i) if and only if
D3I_3=1/(t/3) * integ(D3I_2 - D3I_3, i*t/3);
D3I_2=1/(t/3) * integ(D3I_1 - D3I_2, i*t/3);
D3I_1=1/(t/3) * integ(x - D3I_1, i*t/3);

For example, figure 3.1 demonstrates the first-order and third-order
delay functions for the following input and time period.

Example

x=sin(time);
t=40*dt;
dt=0.025;

The smooth-like functions have the next idea, where the smoothN func-
tions are a generalization of the following rule. If you will compare these
functions with other simulation software tools, then please note that the
smoothN functions have no effect of the discrete operator that may im-
plicitly present in some other tools. In case of need, this operator can be
added in the equations manually.

21

Figure 3.1: The first-order delay, D1, and third-order delay function, D3_3,
for the specified input, x, and time period.

Definition

S1=smooth(x, t) if and only if
S1=integ((x - S1)/t, x);

S1I=smooth(x, t, i) if and only if
S1I=integ((x - S1I)/t, i);

S3_3=smooth3(x, t) if and only if
S3_3=integ((S3_2 - S3_3)/(t/3), x);
S3_2=integ((S3_1 - S3_2)/(t/3), x);
S3_1=integ((x - S3_1)/(t/3), x);

S3I_3=smooth3(x, t, i) if and only if
S3I_3=integ((S3I_2 - S3I_3)/(t/3), i);
S3I_2=integ((S3I_1 - S3I_2)/(t/3), i);
S3I_1=integ((x - S3I_1)/(t/3), i);

The delay and smooth functions behave different when the time period
is changing.

The forecast and trend functions have the following definition, where
the init operator returns the initial value of the expression at start time of
simulation.

22

Definition

forecast(x, t, h) = x * (1 + (x / smooth(x, t) - 1) / t * h);

trend(x, t, i) = (x / smooth(x, t, init(x) / (1 + i * init(t))) - 1) / t;

Table 3.10: Financial Functions

npv (s, r, i, f) Returns the Net Present Value (NPV)
of stream s computed using the speci-
fied discount rate r, the initial value i
and some factor f (usually 1)

npve (s, r, i, f) Returns the Net Present Value End of
period (NPVE) of stream s computed
using the specified discount rate r, the
initial value i and some factor f

In VisualAivika the financial functions have the following definition.

Definition

npv=npv(s, r, i, f) if and only if

npv = (accum + dt * s * df) * f;
df = integ(- df * r, 1);
accum = integ(s * df, i);

npve=npve(s, r, i, f) if and only if

npve = (accum + dt * s * df) * f;
df = integ(- df * r / beta, 1 / beta);
accum = integ(s * df, i);
beta = 1 + r * dt;

Table 3.11: Simulation Operators

discrete (x) It returns a value of x, which doesn’t
change except of the integration dt
intervals regardless of the integration
method used

init (x) It returns the initial value of x

Unlike other simulation software tools, VisualAivika has slightly non-

23

standard operators discrete and init. They are related to the very simu-
lation engine of VisualAivika. Any numeric expression can have the initial
value. Also we can treat any numeric expression as something that would
be updated as if the Euler’s method was applied. Usually, you do not need
to apply these operators in your models. Moreover, these two last oper-
ators are specific to VisualAivika and they are not transferable between
different simulation software tools.

3.7 Ranges

A range is defined by two integer expressions: the low index of the range
and the high index of the range. The expressions must be delimited by
two dots.

Example

N = 10;

I_Range = 1..N;
J_Range = 1..5;

The ranges can be defined on like other variables and then be used in
the equations. They are needed for arrays.

3.8 Arrays

To define an one-dimensional array, you can use a special syntax:

[Element | Index <- Range]

Here the element expression can depend on the index which values will
be received from the specified range.

This syntax is generalized for other dimensions too. For example, a
two-dimensional array can be defined by adding another index:

[Element | Index1 <- Range1, Index2 <- Range2]

VisualAivika supports up to 5 dimensions.
To refer to an element of the one-dimensional array by the specified

index, you can use a subscript like this:

Array[Index]

24

Similarly, the two-dimensional array element can be referenced by two
indices:

Array2D[Index1, Index2]

The rule is generalized for other dimensions too.

Example

n = 51;

C = [if (i == 0) or (i == n + 1) then 0 else M[i] / v | i <- 0..n+1];
M = [integ (q + k*(C[i-1] - C[i]) + k*(C[i + 1] - C[i]), 0) | i <- 1..n];

q = 1;
k = 2;
v = 0.75;

In this example C and M are one-dimensional arrays that have different
indices. The C array has values C[0], . . . , C[n+1], while array M has values
M[1], . . . , M[n].

By the way, the ranges could be defined as separate variables. For
simplicity, here the ranges are defined within the arrays. The both methods
are acceptable.

3.8.1 Functions for Arrays and Ranges

The following functions are defined for the arrays and ranges.

Table 3.12: Functions for Arrays and Ranges

length (a) Returns the total element count for the speci-
fied range or array a

length (a,
d)

Returns the element count for the specified
array a and dimension d starting from 0

low (a) Returns the low index for the specified range
or one-dimensional array a

low (a, d) Returns the low index for the specified array
a and dimension d starting from 0

high (a) Returns the high index for the specified range
or one-dimensional array a

high (a, d) Returns the high index for the specified array
a and dimension d starting from 0

25

min (a) Returns the minimal element of the specified
array a

max (a) Returns the maximal element of the specified
array a

sum (a) Returns a sum of the elements for the specified
array a

prod (a) Returns a product of the elements for the spec-
ified array a

mean (a) Returns an average value for the specified ar-
ray a

The last functions are aggregating. It is useful that we can create inter-
mediate arrays to pass in them to these functions.

The following example is an equivalent to [Vensim 5 Reference Manual,
page 30, example 3], from the documentation of Vensim[2].

Example

efficiency = prod(factor_efficiency);
US_population = sum(population);
revenue = [sum([sales[c, p] * price[p, b] | p <- product]) |

c <- country, b <- brand];

Please note how an intermediate array is created, when summing the
revenue.

The next example is related to the Theory of Games. It calculates a max-
imin and minimax by the specified matrix of dimension n×n, respectively.

Example

max_min = max([min([A[i,j] | j <- 1..n]) | i <- 1..n])
min_max = min([max([A[i,j] | j <- 1..n]) | i <- 1..n])

3.8.2 Array Initialization

Some arrays can be defined in a table form without direct using ranges and
indices. There is a simplified syntax for that.

Example

A1 = [0, 1, 2, 3, 4, 5];
A2 = [[0, 1], [2, 3], [4, 5]];
A3 = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]];

Only such arrays will always have indices starting from zero.

26

3.9 Sensitivity Analysis

As it was mentioned before, there are predefined variables runIndex and
runCount that return the current run index, starting from zero, and the
total run count for the Monte-Carlo simulation experiment, respectively.

It is important that the runIndex variable is constant within the simula-
tion run, but then it is updated for another run. There are similar random
parameters that have the same property. They are constant within the
current run, but they are updated for another run.

Table 3.13: Random Parameters

randomParam (a, b) Returns the uniform random pa-
rameter between a and b

normalParam (m, n) Returns the normal random pa-
rameter with mean m and vari-
ance n

binomialParam (p, n) Returns the binomial random
parameter on n trials of proba-
bility p

poissonParam (m) Returns the Poisson random pa-
rameter with mean m

Such parameters are useful for providing the Sensitivity analysis. They
can be used in the equations.

By redefining some constants as random external parameters, we can
test the model for stability. For that, VisualAivika supports the Monte-
Carlo simulation to provide the Sensitivity Analysis. The results of this
analysis can be displayed on charts like figure 3.2, where the Deviation
Chart view is used.

Furthermore, combining the array initialization syntax and built-in
variables runIndex and runCount, we can specify sampling for the ex-
ternal parameters.

The idea is quite simple. We define an array with values and then refer
to the array by the run index, probably, bound by the array length.

Example

A = [[1, 2, 3],
[2, 3, 1],
[3, 1, 2]];

Sample = mod(runIndex, length(A, 0));

27

Figure 3.2: The chart shows how stable is the model relative to changes of
the external random parameters.

X1 = A[Sample, 0];
X2 = A[Sample, 1];
X3 = A[Sample, 2];

3.10 Nested Modules

The model can contain modules that can be nested. Each module defines
its own name space for variables.

VisualAivika uses modules to keep variables from the same diagram in
a separate module.

Example

// the global variable
A = 1;

module M1 {

// variable M1.B
B = A + 1;

28

module M2 {

// variable M1.M2.C
C = 2 * B;

// use the qualified name to M1.B
D = C - M1.B;

}
}

29

Chapter 4

Experiment Views

The experiment views allow you to see the simulations results in a preferred
way. It can be a chart, or table with CSV data. The view specifies exactly
how the results will be represented. The same experiment can contain an
arbitrary number of views, enumerated one by one.

4.1 Deviation Chart

The Deviation Chart view is the most universal view, which is applicable
both to single and multiple runs. If the run is single, then the Deviation
Charts becomes similar to the Time Series chart as described in section 4.2.
But if the Monte-Carlo simulation experiment is used, then the Deviation
Chart shows the trend and confidence intervals by the 3-sigma rule.

The following table contains the optional properties, which can be used
for plotting the Deviation Chart.

Table 4.1: Deviation Chart

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when plotting on the chart

width = width; Specifies the chart width
height = height; Specifies the chart height

Example

experiment {
deviationChart {

series = [
Finance.net_cash_flow,

30

Finance.npv_cash_flow
];

}
}

The corresponding chart is represented in figure 4.1.

Figure 4.1: The Deviation Chart view representation.

4.2 Time Series

The Time Series chart displays the ordinary chart, where the series depend
on the modeling time. If the Monte-Carlo method is used, then the corre-
sponding number of charts will be plotted, by one for each run. Hence,
please use the Time Series chart only for single run, or for the Monte-Carlo
method with a small number of runs!

The following table contains the optional properties, which can be used
for plotting the Time Series.

31

Table 4.2: Time Series

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when plotting on the chart

width = width; Specifies the chart width
height = height; Specifies the chart height

Example

x = sin(time);
y = cos(time);

experiment {
timeSeries {

series = [x, y];
}

}

The corresponding chart is represented in figure 4.2.

4.3 XY Chart

The XY Chart is similar to the Time Series chart described in the previous
section 4.2. Only we specify the series that can depend on an arbitrary
series. If the Monte-Carlo method is used, then the corresponding number
of charts will be plotted, by one for each run. Hence, please use the XY
Chart view only for single run, or for the Monte-Carlo method with a small
number of runs!

The following table contains the properties, which can be used for
plotting the XY Chart. The seriesX property is mandatory.

Table 4.3: XY Chart

seriesX = seriesX; Specifies the series that will be
used as X

seriesY = [seriesY1, se-
riesY2, . . .];

Enumerates the variable names
seriesY1, seriesY2, . . . , which will
be used as Y, when plotting on
the chart

width = width; Specifies the chart width
height = height; Specifies the chart height

32

Figure 4.2: The Time Series view representation.

Example

x = sin(time);
y = cos(time);
z = x + y;

experiment {
xyChart {

seriesX = x;
seriesY = [y, z];

}
}

The corresponding chart is represented in figure 4.3.

33

Figure 4.3: The XY Chart view representation.

4.4 CSV Table

The CSV Table view is destined for exporting CSV data to other applica-
tions, or saving the data in the file. A text block component is displayed,
from which you can copy the corresponding CSV data. If the Monte-Carlo
method is used, then the corresponding number of components will be
created, by one for each run. Hence, please use the CSV Table view only
for single run, or for the Monte-Carlo method with a small number of runs!

The following table contains the optional properties, which can be used
for displaying the CSV Table.

Table 4.4: CSV Table

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when displaying the table

34

width = width; Specifies the table component
width

height = height; Specifies the table component
height

Example

x = sin(time);
y = cos(time);

experiment {
timeSeries {

series = [x, y];
}

csvTable {
series = [time, x, y];

}
}

The corresponding table is represented in figure 4.4.

4.5 Last Values

The view of Last Values is destined for displaying the series values at the
final time point of simulation. If the Monte-Carlo method is used, then
the corresponding number of components will be created, by one for each
run. Hence, please use the Last Values only for single run, or for the
Monte-Carlo method with a small number of runs!

The following table describes the property, which can be used for dis-
playing the Last Values.

Table 4.5: Last Values

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when displaying the final
values

35

Figure 4.4: The CSV Table view representation.

Example

dt = 0.01;

ka = 1;
kb = 1;

A = integ(-ka * A, 100);
B = integ(ka * A - kb * B, 0);
C = integ(kb * B, 0);

experiment {
lastValues {

series = [A, B, C];
}

timeSeries {

36

series = [A, B, C];
}

}

The corresponding output is represented in figure 4.5.

Figure 4.5: The view representation of Last Values.

4.6 Last Value Histogram

The Last Value Histogram view is destined for plotting the histogram
by series values at the final modeling time, when using the Monte-Carlo
method with multiple runs.

The following table contains the optional properties, which can be used
for plotting the Last Value Histogram.

Table 4.6: Last Value Histogram

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will
be used, when plotting the his-
togram at final time point

width = width; Specifies the chart width
height = height; Specifies the chart height

Example

experiment {
lastValueHistogram {

series = [
Resources.Total_Resources,
Goods.Economic_Goods

];
}

}

37

The corresponding chart is represented in figure 4.6.

Figure 4.6: The Last Value Histogram view representation.

4.7 Last Value CSV Table

When applying the Monte-Carlo method, the Last Value CSV Table view
collects data at final time points, and it is destined for exporting the data to
other applications, or saving the data in the file. A text block component
is displayed, from which you can copy the corresponding CSV data.

The following table contains the optional properties, which can be used
for displaying the Last Value CSV Table.

38

Table 4.7: Last Value Statistics

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when collecting data at fi-
nal time points

width = width; Specifies the table component
width

height = height; Specifies the table component
height

Example

experiment {
lastValueCsvTable {

series = [
Resources.Total_Resources,
Goods.Economic_Goods

];
}

}

The corresponding table is represented in figure 4.7.

4.8 Last Value Statistics Summary

When applying the Monte-Carlo method, the Last Value Statistics Sum-
mary view collects data at final time points and presents the results on the
corresponding component.

The following table contains the optional properties, which can be used
for displaying the Last Value Statistics Summary.

Table 4.8: Last Value Statistics Summary

series = [series1, series2,
. . .];

Enumerates the variable names
series1, series2, . . . , which will be
used, when collecting data at fi-
nal time points

width = width; Specifies the component width

39

Figure 4.7: The Last Value CSV Table view representation.

Example

experiment {
lastValueStats {

series = [
Resources.Total_Resources,
Goods.Economic_Goods

];
}

}

The corresponding component is represented in figure 4.8.

40

Figure 4.8: The Last Value Statistics Summary view representation.

41

Bibliography

[1] Berkeley Madonna. http://www.berkeleymadonna.com, 2024. Ac-
cessed: 20-July-2024.

[2] Vensim Software. http://vensim.com, 2024. Accessed: 20-July-2024.

42

http://www.berkeleymadonna.com
http://vensim.com

	Getting Started
	Monte Carlo Experiment
	Modeling Language
	Simulation Specs
	Variables
	Equations
	Operators
	Constants
	Functions
	Ranges
	Arrays
	Functions for Arrays and Ranges
	Array Initialization

	Sensitivity Analysis
	Nested Modules

	Experiment Views
	Deviation Chart
	Time Series
	XY Chart
	CSV Table
	Last Values
	Last Value Histogram
	Last Value CSV Table
	Last Value Statistics Summary

